skip to main content


Search for: All records

Creators/Authors contains: "Hille Ris Lambers, Janneke"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Stem‐mapped forest stands offer important opportunities for investigating the fine‐scale spatial processes occurring in forest ecosystems. These stands are areas of the forest where the precise locations and repeated size measurements of each tree are recorded, thereby enabling the calculation of spatially‐explicit metrics of individual growth rates and of the entire tree community. The most common use of these datasets is to investigate the drivers of variation in forest processes by modeling tree growth rate or mortality as a function of these neighborhood metrics. However, neighborhood metrics could also serve as important covariates of many other spatially variable forest processes, including seedling recruitment, herbivory and soil microbial community composition. Widespread use of stem‐mapped forest stand datasets is currently hampered by the lack of standardized, efficient and easy‐to‐use tools to calculate tree dynamics (e.g. growth, mortality) and the neighborhood metrics that impact them. We present the forestexplorR package that facilitates the munging, exploration, visualization and analysis of stem‐mapped forest stands. By providing flexible, user‐friendly functions that calculate neighborhood metrics and implement a recently‐developed rapid‐fitting tree growth and mortality model, forestexplorR broadens the accessibility of stem‐mapped forest stand data. We demonstrate the functionality of forestexplorR by using it to investigate how the species identity of neighboring trees influences the growth rates of three common tree species in Mt Rainier National Park, WA, USA. forestexplorR is designed to facilitate researchers to incorporate spatially‐explicit descriptions of tree communities in their studies and we expect this increased diversity of contributors to develop exciting new ways of using stem‐mapped forest stand data.

     
    more » « less
  2. Abstract

    Mountain meadows are an essential part of the alpine–subalpine ecosystem; they provide ecosystem services like pollination and are home to diverse plant communities. Changes in climate affect meadow ecology on multiple levels, for example, by altering growing season dynamics. Tracking the effects of climate change on meadow diversity through the impacts on individual species and overall growing season dynamics is critical to conservation efforts. Here, we explore how to combine crowd‐sourced camera images with machine learning to quantify flowering species richness across a range of elevations in alpine meadows located in Mt. Rainier National Park, Washington, USA. We employed three machine‐learning techniques (Mask R‐CNN, RetinaNet and YOLOv5) to detect wildflower species in images taken during two flowering seasons. We demonstrate that deep learning techniques can detect multiple species, providing information on flowering richness in photographed meadows. The results indicate higher richness just above the tree line for most of the species, which is comparable with patterns found using field studies. We found that the two‐stage detector Mask R‐CNN was more accurate than single‐stage detectors like RetinaNet and YOLO, with the Mask R‐CNN network performing best overall with mean average precision (mAP) of 0.67 followed by RetinaNet (0.5) and YOLO (0.4). We found that across the methods using anchor box variations in multiples of 16 led to enhanced accuracy. We also show that detection is possible even when pictures are interspersed with complex backgrounds and are not in focus. We found differential detection rates depending on species abundance, with additional challenges related to similarity in flower characteristics, labeling errors and occlusion issues. Despite these potential biases and limitations in capturing flowering abundance and location‐specific quantification, accuracy was notable considering the complexity of flower types and picture angles in this dataset. We, therefore, expect that this approach can be used to address many ecological questions that benefit from automated flower detection, including studies of flowering phenology and floral resources, and that this approach can, therefore, complement a wide range of ecological approaches (e.g., field observations, experiments, community science, etc.). In all, our study suggests that ecological metrics like floral richness can be efficiently monitored by combining machine learning with easily accessible publicly curated datasets (e.g., Flickr, iNaturalist).

     
    more » « less
  3. Improving high-resolution (meter-scale) mapping of snow-covered areas in complex and forested terrains is critical to understanding the responses of species and water systems to climate change. Commercial high-resolution imagery from Planet Labs, Inc. (Planet, San Francisco, CA, USA) can be used in environmental science, as it has both high spatial (0.7–3.0 m) and temporal (1–2 day) resolution. Deriving snow-covered areas from Planet imagery using traditional radiometric techniques have limitations due to the lack of a shortwave infrared band that is needed to fully exploit the difference in reflectance to discriminate between snow and clouds. However, recent work demonstrated that snow cover area (SCA) can be successfully mapped using only the PlanetScope 4-band (Red, Green, Blue and NIR) reflectance products and a machine learning (ML) approach based on convolutional neural networks (CNN). To evaluate how additional features improve the existing model performance, we: (1) build on previous work to augment a CNN model with additional input data including vegetation metrics (Normalized Difference Vegetation Index) and DEM-derived metrics (elevation, slope and aspect) to improve SCA mapping in forested and open terrain, (2) evaluate the model performance at two geographically diverse sites (Gunnison, Colorado, USA and Engadin, Switzerland), and (3) evaluate the model performance over different land-cover types. The best augmented model used the Normalized Difference Vegetation Index (NDVI) along with visible (red, green, and blue) and NIR bands, with an F-score of 0.89 (Gunnison) and 0.93 (Engadin) and was found to be 4% and 2% better than when using canopy height- and terrain-derived measures at Gunnison, respectively. The NDVI-based model improves not only upon the original band-only model’s ability to detect snow in forests, but also across other various land-cover types (gaps and canopy edges). We examined the model’s performance in forested areas using three forest canopy quantification metrics and found that augmented models can better identify snow in canopy edges and open areas but still underpredict snow cover under forest canopies. While the new features improve model performance over band-only options, the models still have challenges identifying the snow under trees in dense forests, with performance varying as a function of the geographic area. The improved high-resolution snow maps in forested environments can support studies involving climate change effects on mountain ecosystems and evaluations of hydrological impacts in snow-dominated river basins. 
    more » « less
  4. Abstract

    Recent studies highlight the potential of climate change refugia (CCR) to support the persistence of biodiversity in regions that may otherwise become unsuitable with climate change. However, a key challenge in using CCR for climate resilient management lies in how CCR may intersect with existing forest management strategies, and subsequently influence how landscapes buffer species from negative impacts of warming climate. We address this challenge in temperate coastal forests of the Pacific Northwestern United States, where declines in the extent of late‐successional forests have prompted efforts to restore old‐growth forest structure. One common approach for doing so involves selectively thinning forest stands to enhance structural complexity. However, dense canopy is a key forest feature moderating understory microclimate and potentially buffering organisms from climate change impacts, raising the possibility that approaches for managing forests for old‐growth structure may reduce the extent and number of CCR. We used remotely sensed vegetation indices to identify CCR in an experimental forest with control and thinned (restoration) treatments, and explored the influence of biophysical variables on buffering capacity. We found that remotely sensed vegetation indices commonly used to identify CCR were associated with understory temperature and plant community composition, and thus captured aspects of landscape buffering that might instill climate resilience and be of interest to management. We then examined the interaction between current restoration strategies and CCR, and found that selective thinning for promoting old‐growth structure had only very minor, if any, effects on climatic buffering. In all, our study demonstrates that forest management approaches aimed at restoring old‐growth structure through targeted thinning do not greatly decrease buffering capacity, despite a known link between dense canopy and CCR. More broadly, this study illustrates the value of using remote sensing approaches to identify CCR, facilitating the integration of climate change adaptation with other forest management approaches.

     
    more » « less
  5. Neighborhood models have allowed us to test many hypotheses regarding the drivers of variation in tree growth, but require considerable computation due to the many empirically supported non-linear relationships they include. Regularized regression represents a far more efficient neighborhood modeling method, but it is unclear whether such an ecologically unrealistic model can provide accurate insights on tree growth. Rapid computation is becoming increasingly important as ecological datasets grow in size, and may be essential when using neighborhood models to predict tree growth beyond sample plots or into the future. We built a novel regularized regression model of tree growth and investigated whether it reached the same conclusions as a commonly used neighborhood model, regarding hypotheses of how tree growth is influenced by the species identity of neighboring trees. We also evaluated the ability of both models to interpolate the growth of trees not included in the model fitting dataset. Our regularized regression model replicated most of the classical model’s inferences in a fraction of the time without using high-performance computing resources. We found that both methods could interpolate out-of-sample tree growth, but the method making the most accurate predictions varied among focal species. Regularized regression is particularly efficient for comparing hypotheses because it automates the process of model selection and can handle correlated explanatory variables. This feature means that regularized regression could also be used to select among potential explanatory variables (e.g., climate variables) and thereby streamline the development of a classical neighborhood model. Both regularized regression and classical methods can interpolate out-of-sample tree growth, but future research must determine whether predictions can be extrapolated to trees experiencing novel conditions. Overall, we conclude that regularized regression methods can complement classical methods in the investigation of tree growth drivers and represent a valuable tool for advancing this field toward prediction. 
    more » « less
  6. Abstract

    By causing phenological shifts that vary among species, climate change is altering time envelopes for species interactions, often with unexpected demographic consequences. Indirect interactions, like apparent competition and apparent facilitation, are especially likely to change in duration because they involve multiple interactors, increasing the likelihood of asynchronous phenological shifts by at least one interactor. Thus, we might observe ecological surprises if intermediaries of indirectly interacting species change their mediating behaviour.

    We explored this possibility in a plant–pollinator community that is likely to experience asynchronous phenological shifts. We advanced and delayed the flowering phenology of two ubiquitous exotic plants of western Washington prairies,Hypochaeris radicataandCytisus scoparius, relative to seven native perennial forb species whose phenologies remained unmanipulated. These species interact indirectly through shared pollinators, whose foraging behaviour influences plant reproductive success. We quantified impacts of experimental phenological shifts on seedset, pollinator visitation rates and visiting pollinator composition relative to an unmanipulated control. We first verified that unmanipulated indirect interactions between native and exotic plants were strong, ranging from facilitative to competitive.

    Seedset of native plants was strongly affected by changes in exotic flowering phenology, but the magnitude and direction of effects were not predicted by the nature of the original indirect interaction (facilitative vs. neutral vs. competitive) or the change in interaction duration. The relationship between pollinator visitation and seedset changed for most species, though changes in pollinator visitation rate and pollinator composition were not as widespread as effects on native seedset.

    Synthesis. Changes in pollinator foraging behaviour in response to changes in available floral resources are probably responsible for the unexpected effects we observed. Asynchronous phenological shifts have the potential to produce large and unexpected effects on reproductive success via indirect interactions.

     
    more » « less
  7. Tree fecundity and recruitment have not yet been quantified at scales needed to anticipate biogeographic shifts in response to climate change. By separating their responses, this study shows coherence across species and communities, offering the strongest support to date that migration is in progress with regional limitations on rates. The southeastern continent emerges as a fecundity hotspot, but it is situated south of population centers where high seed production could contribute to poleward population spread. By contrast, seedling success is highest in the West and North, serving to partially offset limited seed production near poleward frontiers. The evidence of fecundity and recruitment control on tree migration can inform conservation planning for the expected long-term disequilibrium between climate and forest distribution. 
    more » « less
  8. Abstract The relationships that control seed production in trees are fundamental to understanding the evolution of forest species and their capacity to recover from increasing losses to drought, fire, and harvest. A synthesis of fecundity data from 714 species worldwide allowed us to examine hypotheses that are central to quantifying reproduction, a foundation for assessing fitness in forest trees. Four major findings emerged. First, seed production is not constrained by a strict trade-off between seed size and numbers. Instead, seed numbers vary over ten orders of magnitude, with species that invest in large seeds producing more seeds than expected from the 1:1 trade-off. Second, gymnosperms have lower seed production than angiosperms, potentially due to their extra investments in protective woody cones. Third, nutrient-demanding species, indicated by high foliar phosphorus concentrations, have low seed production. Finally, sensitivity of individual species to soil fertility varies widely, limiting the response of community seed production to fertility gradients. In combination, these findings can inform models of forest response that need to incorporate reproductive potential. 
    more » « less
  9. Despite its importance for forest regeneration, food webs, and human economies, changes in tree fecundity with tree size and age remain largely unknown. The allometric increase with tree diameter assumed in ecological models would substantially overestimate seed contributions from large trees if fecundity eventually declines with size. Current estimates are dominated by overrepresentation of small trees in regression models. We combined global fecundity data, including a substantial representation of large trees. We compared size–fecundity relationships against traditional allometric scaling with diameter and two models based on crown architecture. All allometric models fail to describe the declining rate of increase in fecundity with diameter found for 80% of 597 species in our analysis. The strong evidence of declining fecundity, beyond what can be explained by crown architectural change, is consistent with physiological decline. A downward revision of projected fecundity of large trees can improve the next generation of forest dynamic models.

     
    more » « less